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1. Introduction 

In 1974, Das defined the concepts of semi-connectedness in topology and investigated its 

properties. Compactness is one of the most important, useful and fundamental concepts in 

topology. In 1981, Dorsett introduced and studied the concept of semi-compact spaces. Since 

then, Hanna and Dorsett, Ganster and Mohammad S.Sarask investigated the properties of semi-

compact spaces. In 1990, Ganster defined and investigated semi-lindelof spaces. The notion of 

connectedness and compactness are useful of not only general topology but also of other 

advanced branches of Mathematics.  

 

In 2015, K.BalaDeepaArasi and S.Navaneetha Krishnan introduced and studied the properties of 

sbĝ-closed sets in topological spaces. In this paper, we introduce the concepts of sbĝ-connected 

spaces, sbĝ-compact spaces and sbĝ-lindelof spaces. Also, we investigate their basic properties. 

 

2. Preliminaries 

Throughout this paper (X, τ) (or simply X) represents topological spaces on which no separation 

axioms are assumed unless otherwise mentioned. For a subset A of (X,τ), Cl(A), Int(A) and A
c
 

denote the closure of A, interior of A and the complement of A respectively. We are giving some 

definitions. 

 

Definition 2.1:[1]  A subset A of a topological space (X,τ) is called a sbĝ-closed set if  sCl(A)  

U whenever A  U and U is bĝ-open in X. The family of all sbĝ-closed sets of X are denoted by 

sbĝ-C(X). 

Definition 2.2:[1] The complement of a sbĝ-closed set is called sbĝ-open set. The family of all 

sbĝ-open sets of X are denoted by sbĝ-O(X). 

Definition 2.3:[13] A topological space X is said to be connected if X cannot be expressed as the 

union of two disjoint non-empty open sets in X. 

Definition 2.4:[9] A collection B of open sets in X is called an open cover of A X if         A 

∪ {𝑈𝛼 : 𝑈𝛼𝜖𝐵}holds. 

Definition 2.5:[10] A topological space X is said to be compact if every open cover of X has a 

finite subcover. 
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Definition 2.6:[9] A topological space X is said to be Lindelof if every cover of X by open sets 

contains a countable subcover. 

Definition 2.7: A function  f: (X,τ) → (Y,σ) is called a  

1) sbĝ-continuous[2] if 𝑓−1(V) is sbĝ-closed in X for every closed set V in Y. 

2) sbĝ-irresolute[2] if 𝑓−1(V) is sbĝ-closed in X for every sbĝ-closed set V in Y. 

3) stronglysbĝ-continuous[3] if 𝑓−1(V) is closed in X for every sbĝ-closed set V in Y. 

4) sbĝ - open map[2] if f(V) is sbĝ-open in Y for every open set V in X. 

5) contrasbĝ-continuous map[3] if 𝑓−1(V) is sbĝ-closed in (X,τ) for every open set V in 

(Y,σ). 

 

Definition 2.8:[12] A space (X, τ) is said to be locally indiscrete if every open subset of X is 

closed in X. 

Definition 2.9:[1] A Space (X,τ) is called a Tsbĝ-space if every sbĝ-closed set in X is closed. 

Theorem 2.10:[12] A topological space X is connected if and only if the only clopen subsets of 

X are ϕ and X. 

3. sbĝ–Connectedness 

We introduce the following definitions. 

 

Definition 3.1: Atopological space (X,τ) is called a sbĝ–connected space, if (X,τ) cannot be 

written as a disjoint union of two non–empty sbĝ–open sets. A subset of (X,τ) is                sbĝ–

connected if it is sbĝ–connected as a subspace of (X,τ). 

 

Definition 3.2: A subset A of a topological space (X,τ) is called sbĝ-regular if it is both     sbĝ-

open and sbĝ-closed. 

 

Theorem 3.3:A topological space X is sbĝ-connected if only if the only sbĝ-regular subsets of X 

are ϕ and X itself. 

Proof: 

Necessity: 

 Suppose X is a sbĝ-connected space. Let A be non-empty proper subset of X that is, sbĝ-

regular. Then A and X\A are non-empty sbĝ-regular set. This is contradiction to our assumption. 
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Sufficiency: 

 Suppose X = A ∪ B where A and B are disjoint non-empty sbĝ-open sets. Then          A = 

X\B is sbĝ-closed. Thus A is a non-empty proper subset that is, sbĝ-regular. This is contradiction 

to our assumption. Therefore, X is sbĝ-connected. 

 

Theorem 3.4: A topological space X is sbĝ-connected if and if every sbĝ-continuous function of 

X into a discrete space Y with atleast two points is a constant function.  

Proof: 

Necessity: 

 Let f be a sbĝ-continuous function of the sbĝ-connected space into the discrete space Y. 

Then for each y ∈ Y, 𝑓−1( 𝑦 ) is a sbĝ-regular set of X. Since X is sbĝ-connected, 𝑓−1( 𝑦 ) = ϕ 

or X. If 𝑓−1( 𝑦 ) = ϕ for all y ∈ Y, then f ceases to be a function. Therefore, 𝑓−1 ({y0}) = X for 

a unique y0∈ Y. This implies f(X) = { y0 } and hence f is a constant function. 

Sufficiency: 

 Let U be a sbĝ-regular set in X. Suppose U = ϕ. We claim that U = X. Otherwise, choose 

two fixed points 𝑦1and 𝑦2 in Y. Define f: X → Y by f(x) =  𝑦1 if x ∈ U 

         𝑦2 otherwise 

 

      U if V contains 𝑦1 only 

Then for an open set V in Y, 𝑓−1 𝑉  = X\U if V contains 𝑦2 only 

      X  if  V contains both 𝑦1 and 𝑦2 

      Φ otherwise. 

In all the cases 𝑓−1 𝑉  is sbĝ-open in X. Hence f is non-constant sbĝ-continuous function of X 

into Y. This is a contradiction to our assumption. This proves that the only sbĝ-regular subsets of 

X are ϕ and X. Hence, X is sbĝ-connected. 

 

Theorem 3.5: Every sbĝ–connected space is connected. 

Proof: Let (X,τ) be a sbĝ–connected space. Suppose that (X,τ) is not connected. Then X=A⋃B 

where A and B are disjoint non–empty open sets in (X,τ). By proposition 3.4 in [1], A and B are 

sbĝ–open sets. Therefore, X=A⋃B, where A and B are disjoint non–empty     sbĝ–open sets in 

(X,τ). This contradicts the fact that (X,τ) is sbĝ–connected and so (X,τ) is connected. 
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The converse of the above theorem need not be true as shown in the following example. 

 

Example 3.6: Let X={a,b,c} and  τ = {X, Φ}. Then (X,τ) is a connected space but not a    sbĝ–

connected space, because X = {a}⋃{b,c}, where {a} and {b,c} are sbĝ–open sets in (X,τ). 

 

Theorem 3.7: If (X,τ) is a Tsbĝ– space and connected, then (X,τ) is sbĝ–connected.  

Proof: Suppose X is not sbĝ–connected. Let A and B are two non–empty disjoint sbĝ–open 

subsets of X such that X =A⋃B. Since X is a Tsbĝ–space, A and B are open which is a 

contradiction to our assumption that X is connected. Hence X is sbĝ–connected. 

 

Theorem 3.8:If f: (X,τ) →  (Y, σ) is a sbĝ–continuous surjection and (X,τ) issbĝ–connected, 

then (Y,σ) is connected. 

Proof: Suppose (Y,σ) is not connected, then Y=A⋃B, where A and B are non–empty disjoint 

open sets of (Y,σ). Since f is a sbĝ–continuous onto map, X=𝑓−1 𝐴 ∪ 𝑓−1(𝐵) where 

𝑓−1 𝐴  𝑎𝑛𝑑 𝑓−1(𝐵) are disjoint non–empty sbĝ–open sets in (X,τ). This contradicts the fact that 

(X,τ) is sbĝ–connected  and so (Y,σ) is connected. 

 

Theorem 3.9: If f: (X,τ)  →  (Y,σ) is a sbĝ–irresolute surjection and (X,τ) is sbĝ–connected, then 

so is Y. 

Proof: Suppose (Y,σ) is not sbĝ–connected, then  Y = A⋃B, where A and B are disjoint  non–

empty sbĝ–open sets of (Y,σ). Since f is sbĝ–irresolute and onto, X = 𝑓−1 𝐴 ∪ 𝑓−1(𝐵) where  

𝑓−1 𝐴  𝑎𝑛𝑑 𝑓−1(𝐵) are disjoint non–empty sbĝ–open sets in (X,τ). This contradicts the fact that 

(X,τ) is sbĝ–connected and so (Y,σ) is connected. 

 

Theorem 3.10:If f: (X,τ)   →   (Y,σ) is strongly sbĝ–continuous onto map, where (X,τ) is a 

connected space, then (Y,σ) is sbĝ–connected. 

Proof: Suppose (Y,σ) is not sbĝ–connected, then Y = A⋃B  where  A and B are disjoint   non–

empty sbĝ–open sets of (Y,σ). Since f is strongly sbĝ–continuous and onto,                      X = 

𝑓−1 𝐴 ∪ 𝑓−1(𝐵) where 𝑓−1 𝐴  𝑎𝑛𝑑 𝑓−1(𝐵) are disjoint non–empty open sets in (X,τ). This 

contradicts the fact that (X,τ) is connected and so (Y,σ) is sbĝ–connected. 
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Theorem 3.11:If f: (X,τ)   →   (Y,σ) is sbĝ-open and sbĝ-closed injection and Y is             sbĝ-

connected, then X is connected. 

Proof: Let A be a clopen subset of X. Then, f(A) is sbĝ-regular in Y. Since Y is                 sbĝ-

connected, f(A) = ϕ or Y. Hence A = ϕ or X. By theorem 2.10, X is connected. 

 

Theorem 3.12: A contra sbĝ-continuous image of a sbĝ-connected space is connected. 

Proof: Let (X,τ)   →   (Y,σ) be a contra sbĝ-continuous function from sbĝ-connected space X 

onto a space Y. Assume that Y is disconnected. Then, Y = A ∪ B where A and B are non-empty 

clopen sets in Y with A∩B = ϕ. Since f is contra sbĝ-continuous, we have 𝑓−1 𝐴  and 𝑓−1 𝐵  

are non-empty sbĝ-open sets in X with 𝑓−1 𝐴 ∪ 𝑓−1 𝐵 = 𝑓−1 𝐴 ∪ 𝐵 =𝑓−1 𝑌  = X and 

𝑓−1 𝐴 ∩ 𝑓−1 𝐵  = 𝑓−1 𝐴 ∩ 𝐵  = 𝑓−1 𝜙  = ϕ. This shows that X is not sbĝ-connected which is 

a contradiction. Thus, Y is connected. 

 

 

Theorem 3.13: Let X be a locally indiscrete space. Then the following are equivalent. 

a) X is connected 

b) X is sbĝ-connected. 

Proof: 

Follows from the definitions 2.3, 2.8 and 3.1. 

 

4. sbĝ–Compact Spaces 

We introduce the following definitions. 

 

Definition 4.1: A collection {𝐴𝑖 , i ∈ I} of sbĝ–open sets in topological spaces (X,τ) is called a 

sbĝ–open cover of a subset B is B ⊑⋃{𝐴𝑖 , i ∈ I}. 

 

Definition 4.2: A topological space (X,τ) is said to be sbĝ–compact, if every sbĝ–open cover of 

X has a finite sbĝ–subcover. 
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Definition 4.3: A subset B of a topological space (X,τ) is said to be sbĝ–compact relative to X, if 

for every collection {𝐴𝑖 , i ∈ I} of sbĝ–open subsets of X such that B ⊑⋃{𝐴𝑖 , i ∈ I}, there exists a 

finite subset 𝐼0 of I such that B ⊑⋃{𝐴𝑖 , i ∈𝐼0}. 

 

Definition 4.4: A subset B of a topological space (X,τ) is said to be sbĝ–compact if B is    sbĝ–

compact  as a subspace of  (X,τ). 

 

Theorem 4.5: A sbĝ–closed subset of sbĝ–compact space is sbĝ–compact relative to (X,τ). 

Proof:  Let A be a sbĝ–closed subset of a sbĝ–compact space X. Then 𝐴𝐶  is sbĝ–open in X. Let 

S be a cover of A in X by sbĝ–open sets in X. Then {S,𝐴𝐶} is a sbĝ–open cover of X. Since X is 

sbĝ–compact, it has a finite subcover say {𝐶1,𝐶2,………𝐶𝑛}. If thissubcovercontains 𝐴𝐶 , we 

discard it. Otherwise we leave the subcover as it is. Hence we obtain a finite sbĝ–open subcover 

of A and so A is sbĝ–compact relative to X. 

 

Theorem 4.6: A space X is sbĝ-compact if and only if every family of sbĝ-closed sets in X with 

empty intersection has a finite subfamily with empty intersection. 

Proof: Suppose X is sbĝ-compact and {𝐹𝛼 : 𝛼 𝜖 ∆} is a family of sbĝ-closed sets in X such that 

∩{𝐹𝛼 : 𝛼 𝜖 ∆} = ϕ. Then, ∪  𝑋\𝐹𝛼 : 𝛼 𝜖 ∆  is a sbĝ-open cover for X. Since X is             sbĝ-

compact, this cover has finite subcover, say {X\𝐹𝛼1
, X\𝐹𝛼2

, ……X\𝐹𝛼𝑛
} for X. That is, X = 

∪ {𝑋\𝐹𝛼𝑖
 : 𝑖 = 1,2, … . 𝑛}. This implies that  𝐹𝛼𝑖

𝑛
𝑖=1  = ϕ.  

  

Conversely, Suppose that every family of sbĝ-closed sets in X which has empty intersection. Let 

{𝑈𝛼 : 𝛼 𝜖 ∆} be a sbĝ-open cover for X. Then ∪{𝑈𝛼 : 𝛼 𝜖 ∆} = X. Taking the complements, we 

get∩  𝑋\𝑈𝛼 : 𝛼 𝜖 ∆  = ϕ. Since 𝑋\𝑈𝛼  is sbĝ-closed for each 𝛼 𝜖 ∆. By the assumption, there is a 

finite subfamily, {X\𝑈𝛼1
, X\𝑈𝛼2

, ……X\𝑈𝛼𝑛
} with empty intersection. That is,  𝑈𝛼𝑖

𝑛
𝑖=1  = ϕ. 

Taking the complements on both sides, we get ⋃ 𝑈𝛼𝑖

𝑛
𝑖=1  = X. Hence, X is sbĝ-compact. 

 

Theorem 4.7: A sbĝ–continuous image of a sbĝ–compact space is compact. 

Proof: Let f: (X,τ) → (Y,σ) be a sbĝ–continuous onto map, where (X,τ) is a sbĝ–compact space. 

Let {𝐴𝑖 , i ∈ I} be an open cover of (Y, σ). Then {𝑓−1(𝐴𝑖), i ∈ I} is a sbĝ–open cover of (X,τ). 
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Since (X,τ) is  sbĝ–compact, it has a finite subcover say {𝑓−1(𝐴1),𝑓−1(𝐴2) ……𝑓−1(𝐴𝑛)}. 

Since f is onto, {𝐴1,𝐴2 ……𝐴𝑛} is a finite open cover of (Y,σ) and so (Y,σ) is compact. 

 

Theorem4.8: If a map f: (X,τ) → (Y,σ) is sbĝ–irresolute and a subset B is sbĝ–compact relative 

to (X,τ), then the image f(B) is sbĝ–compact relative to (Y,σ). 

Proof: Let {𝐴𝑖 , i ∈ I} be any collection of sbĝ–open subsets in (Y, σ). Since f is                sbĝ–

irresolute, {𝑓−1(𝐴𝑖), i ∈ I} is also a collection of sbĝ–open sets in (X,τ). Now, since B is sbĝ–

compact relative to (X,τ), for every collection {𝑓−1(𝐴𝑖), i ∈ I} of sbĝ–open sets in  (X,τ) such 

that B ⊑⋃ 𝑓−1(𝐴𝑖)i ∈ I , there exists a finite subsets 𝐼0 of I such that B 

⊑⋃ 𝑓−1(𝐴𝑖)i ∈ 𝐼0
. Therefore, f(B) ⊑⋃ 𝐴𝑖i ∈ 𝐼0

  and so f(B) is sbĝ–compact relative to (Y,σ). 

 

Theorem 4.9: If f: (X,τ) → (Y,σ) is a strongly sbĝ–continuous  onto map where (X,τ)  is a 

compact space, then (Y,σ) is sbĝ–compact. 

Proof: Let {𝐴𝑖 , i ∈ I} be a sbĝ–open cover of (Y, σ). Then {𝑓−1(𝐴𝑖), i ∈ I} is an open cover of 

(X,τ), since f is strongly sbĝ–continuous. Since (X,τ) is compact, it has a finite subcover say 

{𝑓−1(𝐴1),𝑓−1(𝐴2) ……𝑓−1(𝐴𝑛)} and since f is onto, {𝐴1,𝐴2 ……𝐴𝑛} is a finitesubcover of 

(Y,σ) and hence (Y,σ)  is sbĝ–compact. 

 

Theorem 4.10: If f: (X,τ) → (Y,σ) is sbĝ-open function and Y is sbĝ-compact, then X is 

compact. 

Proof: Let {𝑉𝛼} be an open cover for X. Then, {f(𝑉𝛼 )} is a cover of Y by sbĝ-open set. Since Y 

is sbĝ-compact,  

{f(𝑉𝛼 )} contains a finite subcover, namely { f(Vα1), f(Vα2),…… f(Vαn)}. Then                          { 

Vα1,Vα2, ……. Vαn} is a finite subcover for X. Thus X is compact. 

 

Definition 4.11: A space X is said to be sbĝ-Lindelof if every cover of X by sbĝ-open sets 

contain a countable subcover. 

Remark 4.12: Every finite space is sbĝ-compact and every countable space is sbĝ-Lindelof. 
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Theorem 4.13: A space X is sbĝ-Lindelof if and only if every family of sbĝ-closed sets in X 

with empty intersection has a countable subfamily with empty intersection. 

Proof: Suppose X is sbĝ-Lindelof and {𝐹𝛼 : 𝛼 𝜖 ∆} is a family of sbĝ-closed sets in X such that 

∩{𝐹𝛼 : 𝛼 𝜖 ∆} = ϕ. Then, ∪  𝑋\𝐹𝛼 : 𝛼 𝜖 ∆  is a sbĝ-open cover for X. Since X is             sbĝ-

Lindelof, this cover has countable subcover, say {X\𝐹𝛼𝑖
 : i = 1,2,3,….} for X. That is,     X = 

∪ {𝑋\𝐹𝛼𝑖
 : 𝑖 = 1,2, … . . }. This implies that  (𝑋\𝐹𝛼𝑖

)𝑖  = ϕ.  

  

Conversely, Suppose that every family of sbĝ-closed sets in X which has empty intersection. Let 

{𝑈𝛼 : 𝛼 𝜖 ∆} be a sbĝ-open cover for X. Then ∪{𝑈𝛼 : 𝛼 𝜖 ∆} = X. Taking the complements, we 

get∩  𝑋\𝑈𝛼 : 𝛼 𝜖 ∆  = ϕ. Since 𝑋\𝑈𝛼  is sbĝ-closed for each 𝛼 𝜖 ∆. By the assumption, there is a 

countable subfamily, {X\𝑈𝛼𝑖
 : i = 1,2,3,…..} with empty intersection. That is,   X\𝑈𝛼𝑖

 𝑖 = ϕ. 

Taking the complements on both sides, we get ⋃ 𝑈𝛼𝑖𝑖 = X. Hence, X is sbĝ-Lindelof. 

 

Theorem 4.14: Let f: (X,τ) → (Y,σ) be a sbĝ-continuous surjection and X be sbĝ-Lindelof. Then 

Y is Lindelof. 

Proof: Let {𝑉𝛼} be an open cover for Y. Since f is sbĝ-continuous function, {𝑓−1(𝑉𝛼)} is a cover 

of X by sbĝ-open sets. Since X is sbĝ-Lindelof, {𝑓−1(𝑉𝛼)} contains a countable subcover, 

namely {𝑓−1(𝑉𝛼𝑛
)}. Then {𝑉𝛼𝑛

} is a countable subcover for Y. Thus, Y is Lindelof. 

 

Theorem 4.15: Let f: (X,τ) → (Y,σ) be a sbĝ-irresolute surjection and X be sbĝ-Lindelof. Then 

Y is sbĝ-Lindelof. 

Proof: Let {𝑉𝛼} be sbĝ-open cover for Y. Since f is sbĝ-irresolute function, {𝑓−1(𝑉𝛼)} is a cover 

of X by sbĝ-open sets. Since X is sbĝ-Lindelof, {𝑓−1(𝑉𝛼)} contains a countable subcover, 

namely {𝑓−1(𝑉𝛼𝑛
)}. Then {𝑉𝛼𝑛

} is a countable subcover for Y. Thus, Y is           sbĝ-Lindelof. 

 

Theorem 4.16: Let f: (X,τ) → (Y,σ) be a sbĝ-open function and Y be sbĝ-Lindelof. Then Y is 

Lindelof. 

Proof: Let {𝑉𝛼} be an open cover for X. Since f is sbĝ-open function, {𝑓(𝑉𝛼)} is a cover of Y by 

sbĝ-open sets. Since Y is sbĝ-Lindelof, {f(𝑉𝛼)} contains a countable subcover, namely {𝑓(𝑉𝛼𝑛
)}. 

Then {𝑉𝛼𝑛
} is a countable subcover for X. Thus, Y is Lindelof. 
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5. sbĝ-Closure 

We introduce the following definition 

 

Definition 5.1: Let A be a subset of a topological space (X,τ). Then the sbĝ–closure of A is 

defined to be the intersection of all sbĝ–closed sets containing A and is denoted by sbĝ–cl(A). 

That is, sbĝ–cl(A) = ∩{F: A⊑F and F ∈ sbĝ–C(X)}  

Always A ⊑sbĝ–cl(A). 

 

Remark 5.2: sbĝ–cl(A) is the smallest sbĝ–closed set containing A.  

 

Theorem 5.3: Let A and B be subsets of a topological space (X,τ). Then 

(i) sbĝ–cl(Φ) = Φ and sbĝ–cl(X) = X. 

(ii) If A⊑ B, then sbĝ–cl(A) ⊑sbĝ–cl(B). 

(iii) sbĝ–cl(A∩B) ⊑sbĝ–cl(A) ∩sbĝ–cl(B). 

(iv) sbĝ–cl(A∪B) =sbĝ–cl(A) ∪ sbĝ–cl(B). 

(v)      A is a sbĝ–closed set in (X,τ) if and only if A = sbĝ–cl(A). 

(vi) sbĝ–cl(sbĝ–cl(A)) = sbĝ–cl(A). 

 

Proof: 

(i) Obvious. 

(ii) We have A ⊑ B ⊑sbĝ–cl(B). But sbĝ–cl(A) is the smallest sbĝ–closed set containing A. 

Hence,sbĝ–cl(A) ⊑sbĝ–cl(B). 

(iii) We have A∩B ⊑ A and A∩B ⊑ B. From theorem 5.3(ii), sbĝ–cl(A∩B) ⊑sbĝ–cl(A) and 

sbĝ–cl(A∩B) ⊑sbĝ–cl(B). Hence,sbĝ–cl (A∩B) ⊑sbĝ–cl (A) ∩ sbĝ–cl (B). 

(iv) Since A⊑A∪B and B⊑A∪B.  From the above subdivision (ii), we have,sbĝ–cl(A) ⊑sbĝ–

cl(A∪B) and  sbĝ–cl(B) ⊑sbĝ–cl(A∪B). Hence, sbĝ–cl (A)∪ sbĝ–cl (B) ⊑            sbĝ–cl (A∪B).  

On the other hand, A ⊑sbĝ–cl(A) and B ⊑sbĝ–cl(B) implies that A∪B ⊑sbĝ–cl(A) ∪sbĝ–cl(B). 

But, sbĝ–cl(A∪B) is the smallest sbĝ–closed set containing  A B. Hence, sbĝ–cl(A∪B) ⊑ sbĝ–

cl(A) ∪ sbĝ–cl(B). Thus,                                              sbĝ–cl (A∪B) =sbĝ–cl (A) ∪sbĝ–cl (B). 
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(v) Necessity: Suppose that A is a sbĝ–closed set in X. By remark 5.2, A ⊑sbĝ–cl(A). From 

definition 5.1 and hypothesis, we have sbĝ–cl(A)⊑A. Therefore, A= sbĝ–cl(A). 

 

Sufficiency: Suppose that A = sbĝ–cl(A). From definition 5.1, sbĝ–cl(A) is a             sbĝ–closed 

set in X. 

(vi) From definition 5.1, sbĝ–cl(A)  is a  sbĝ–closed set in X. By (v),                               sbĝ–

cl(sbĝ–cl(A)) = sbĝ–cl(A).     

 

Remark 5.4: The reversible inclusion of theorem 5.3 (iii) is not true in general from the 

following example.  

 

Example 5.5: Let X={a,b,c,d} with a topology  τ = {X, Φ, {a},{b,c,d}}. 

sbĝ–C(X) = {X, Φ, {a}, {b,c,d}} 

If A = {b} and B = {c}, then sbĝ–cl(A) = {b,c,d} and sbĝ–cl(B) = {b,c,d}. Here, A∩B = Φ, sbĝ–

cl(A∩B)=Φ.  

But,sbĝ–cl (A)∩sbĝ–cl (B)={b,c,d}.  

Hence, sbĝ–cl (A) ∩ sbĝ–cl (B)⊑sbĝ–cl (A∩B).    

 

Remark 5.6: From theorem 5.3, subdivision (i), (iv) and (vi), we can say that sbĝ–closure is the 

kuratowski closure operator on (X, τ). 

 

Theorem 5.7: In a topological space (X,τ), for every x∈X, x∈sbĝ–cl(A) if and only if   U∩A≠ Φ 

for every sbĝ–open set U containing x. 

Proof: 

Necessity: Let x ∈sbĝ–cl(A)  and suppose that there exists a sbĝ–open set U containing x such 

that U∩A=Φ. Then A ⊑𝑈𝑐   and 𝑈𝑐  is a sbĝ–closed set. By remark 5.2, sbĝ–cl(A) ⊑𝑈𝑐 ⇒ x 

∈ 𝑈𝑐 ⇒ x ∉ U,  a contradiction. Hence, U∩A≠ Φ. 

Sufficiency: Let x ∉  sbĝ–cl(A). Then there exists a sbĝ–closed set F containing A such that x∉  

F. Hence 𝐹𝑐  is a sbĝ–open set containing x such that 𝐹𝑐⊑𝐴𝑐 . Therefore,𝐹𝑐∩A= Φ which 

contradicts the hypothesis. Hence, x ∈ sbĝ–cl(A).     
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Definition 5.8: A point x in a topological space (X,τ)  is called a sbĝ–interior point of a subset A 

of X if there exists some sbĝ–open set U containing x such that U⊑ A. The set of all sbĝ–interior 

points of A is called the sbĝ–interior of A and is denoted by sbĝ–int(A).    

 

Remark 5.9:sbĝ–int(A) is the union of all sbĝ–open sets contained in A, hence sbĝ–int(A) is the 

largest sbĝ–open set contained in A. 

 

Theorem 5.10: If A is a subset of a topological space (X, τ) then 

(i) sbĝ–int(X \ A) = X \ sbĝ–cl(A). 

(ii) sbĝ–cl(X \ A) = X \ sbĝ–int(A). 

Proof:  

(i) We have,sbĝ–int(A)⊑A⊑sbĝ–cl(A). Hence, X \ sbĝ–cl(A)⊑X \ A⊑X \ sbĝ–int(A). Then, 

X \ sbĝ–cl(A) is the sbĝ–open set contained in X \ A. But,sbĝ–int(X \ A) is the largest sbĝ–open 

set contained in X \ A. Therefore, X \ sbĝ–cl(A) ⊑sbĝ–int (X \ A). On the other hand, if x ∈sbĝ–

int (X \ A), there exists a sbĝ–open set U containing x such that U⊑X\A. Hence, U∩A=Φ. 

Therefore,x∉ sbĝ–cl(A) and hence                       x∈X \ sbĝ–cl(A). Thus sbĝ–int(X \ A) ⊑X  

\sbĝ–cl(A). 

(ii) We have,sbĝ–int(A)⊑A⊑sbĝ–cl(A). Hence, X \ sbĝ–cl(A)⊑X \ A⊑X \ sbĝ–int(A). Then 

X \ sbĝ–int(A) is the sbĝ–closed set containing X \ A. But sbĝ–cl(X \ A) is the smallest sbĝ–

closed set containing X \ A. Therefore, sbĝ–cl(X \ A) ⊑ X \ sbĝ–int(A). On the other hand, if x ∈ 

X \ sbĝ–int(A) ⇒ x∉ sbĝ–int(A) 

     ⇒x∉ sbĝ–int(X \ A
c
) 

     ⇒x∉  X \ sbĝ–cl(A
c
) [ From Subdivision (i)] 

     ⇒ x ∈  sbĝ–cl(X \ A)  

Hence,X \ sbĝ–int(A) ⊑sbĝ–cl(X \ A). Thus,sbĝ–cl(X \ A) = X \ sbĝ–int(A). 
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